
AD-A270 083 N ?AG( 777III il ' N ?AG E. .. ..

1. AGENCY 'ISE ONLY L .eve i•dnx) 2- REPORTRT AV -' ) ;AýFP O

IFINAL/O1 OCT 90 TO 30 SEP 92
4. TITLE AND SUBTITLE 5. -UNbiNG NuMBERS

SPECTRAL ANALYSIS ON THE CANONICAL
AUTOREGRESSIVE DECOMPOSITION (U)

23G04/A6/ES
Professor Fadil Santosa AFOSR-91-0024

7. ?ERFORMING ORGANIZATION NAME(S) AND ADORESS(E5) 3. ;

University of Delaware
Dept of Mathematical Sciences
Newark, DE 19716 AFOSRTR- 3 0 5

9. SPONSCRING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. PONSCRING tONWTCRNc

AFOSR/NM , •GENCY PURT '•uMBER

110 DUNCAN AVE, SUITE B115 AFOSR-91- '0024
BOLLING AFB DC 20332-0001 -) .

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED UL

13. ABSTRACT .'Maaximum 200 words)

Time series modeling as the sum of an autoregressive (AR) process and sinusoids is
proposed. When the AR model order is infinite, it is called Canonical
Autoregressive Decomposition (CARD) and is equivalent to the Wold decomposition.
Maximum likelihood estimation of the sinusoidal and AR parameters is shown to
require minimization with respect to only the unknown frequencies. Although the
estimation problem is nonlinear in the sinusoidal amplitudes and AR parameters, it
was reduced to a linear least squares problem by using a nonlinear paarameter
transformation. A general class of signals for which such parameter
transformations are applicable, thereby reducing estimator complexity drastically,
is derived. This class includes sinusoids as well as polynomials and
polynomial-times-exponential signals. The ideas are based on the theory of
invariant subspaces for linear operators. CARD serves as a powerful modeling tool
in signal plus noise settings and therefore finds application in a large variety of
statistical signal processing problems.

14. ' UBJELT:A: UMSL. _. F ~

:6 RiCk C'DOE

17. sECURITY CLASS'FICAtIO CLASSIFI*:• TION &O0. IMITATION OF AESrA(:"
OF REPORT OF THIS PAGE VII Ad•tIACT

WýCLASSIFIED UNCLASSFIED UNCLASSIFIED ,,R(SANE AS REPORT)
NSN 7540-01-280-SSOO Stan'dard Fcrf-'1 !~I Rzv



UNIVERSITY OF RHODE ISLAND

AFOSR-91-0024
1 OCT 90 - 30 SEP 92

SPECTRAL ANALYSIS ON THE CANONICAL
AUTOREGRESSIVE DECOMPOSITION

Steven Iayt and Venkatesh Nageshat

Dept. of Electrical Engineering

University of Rhode Island

Kingston, RI 02881

Permission to publish abstract separately is granted

Abstract

Time series modeling as the sum of an autoregressive (AR) process and sinusoids is
proposed. When the AR model order is infinite, we call this the Canonical Autoregres-
sive Decomposition (CARD) and is equivalent to the Wold decomposition. Maximum

likelihood estimation of the sinusoidal and AR parameters is shown to require min-
imization with respect to only the unknown frequencies. Although the estimation
problem is nonlinear in the sinusoidal amplitudes and AR parameters, we reduce it to
a linear least squares problem by using a nonlinear parameter transformation. A gen-

eral class of signals for which such parameter transformations are applicable, thereby
reducing estimator complexity drastically, is derived. This class includes sinusoids as
well as polynomials and polynomial-times-exponential signals. The ideas are based

on the theory of invariant subspaces for linear operators. CARD serves as a powerful

modeling tool in signal plus noise settings and therefore finds application in a large
variety of statistical signal processing problems. We briefly discuss some applications
such as spectral analysis, broadband/transient detection using line array data, and

fundamental frequency estimation for periodic signals.
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1 Introduction

Many problems encountered in statistical signal processing may be posed as one that at-

tempts to decompose a time series into its signal and noise components. A common example

is spectral analysis in which we interested in extracting sinusoidal components from a back-

ground of noise. More generally, this is the problem of estimation of a mixed spectrum.

one that is composed of continuous as well as discrete components. Many approaches to

this problem have been tried but the results have been generally unsatisfactory. The time

series models appear to be either sinusoids in white noise, used in eigenanalysis approaches,

or colored noise only, used in autoregressive / autoregressive moving average modeling for

spectral estimation.

The problem of statistical inference for a mixed spectrum is not new. Early attempts by

Whittle can be found in [23] and a more general description in [16]. The methods assume

that the sinusoids are well resolved and that the sinusoidal parameter estimates are not

influenced by the coloration of the background noise. This facilitates the implementation

of two step procedures in which the sinusoids are first estimated and removed, followed by

spectral estimation of the background noise. Such an approach is justified by appealing

to asymptotic (as the data record length increases) arguments. While the assumption of

sinusoidal resolution is easily understood in asymptotic arguments, the second assumption,

i.e., that the possible coloration of the noise can be neglected (or, the noise can be assumed to

be white) in estimating the sinusoidal parameters, stems from a result in [9]. The reasoning

is that the asymptotic performance of sinusoidal parameter estimators based on colored

or white noise assumptions are identical. However, in most practical problems of interest

herein, these asymptotic assumptions are invalid due to the availability of only very short

data records. The more important problem from a practical viewpoint, is to be able to jointly

estimate the sinusoidal components as well as the background noise. We propose to do this

by employing what we term the canonical autoregressive decomposition (CARD) model.

It should also be noted that the same type of problem arises in regression analysis [201.

There, if the errors are not white, a weighted least squares estimator is preferred. This,

however, assumes knowledge of the error covariance structure. When the latter is unknown,

the usual practice is to iteratively estimate the error covariance and the regression coefficients,

or to ignore the error correlation entirely and implement an ordinary least squares estimator

[3, 15, 201. Neither approach is optimal (for the given problem) in any sense. Again we would
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like to be able to jointly estimate the regression parameters (which we may think of as the

signal) and the error (noise) covariance structure. The CARD model can be extended to

encompass signals (or trends) such as exponential, polynomial, sinusoidal, or combinations

of these. These results can be used to solve some regression problems with autocorrelated

errors, which are of interest in the social and behavioral sciences [20, Chap. 6].

Finally, the key to the usefulness of our results is that the resulting estimation problem
can be reduced to a simple linear least squares problem by a suitable transformation of the
parameter space. This drastically reduces the overall complexity of the estimation problem.

The paper begins with an introduction to canonical representations for wide-sense sta-

tionary (WSS) processes based on the Wold decomposition. For most practical purposes,
any WSS random process can be represented as an infinite-order autoregressive process plus

a sum of sinusoids. We term this the canonical autoregressive decomposition. Maximum
likelihood estimation of the unknown parameters in the CARD model is the subject of the

next section. While this seems to be a highly nonlinear estimation problem, we reduce its
complexity by applying a nonlinear parameter transformation. Related results may also be

found in [1, 2, 14, 21, 22]. The problem is finally reduced to maximization with respect

to only the unknown sinusoidal frequencies. The following section contains generalizations
of these ideas to handle deterministic signals (other than sinusoids) in autoregressive noise.

These signals include complex exponentials, polynomials, polynomials-times-exponentials.

We prove a theorem which yields all possible signal types for which our parameter trans-
formations simplify maximum likelihood estimation. This generalizes the known results for

non-zero mean [1, p. 2001, pure sinusoids [2, 14, 22], complex exponentials [211, polynomi-

als [4]. In the fifth section, we briefly touch upon some signal processing applications such

as broadband/transient detection using line array data, fundamental frequency estimation,

spectral analysis, etc. Numerical examples to illustrate some applications are also presented.

2 Canonical Autoregressive Decomposition

The canonical autoregressive decomposition (CARD) model is based on the Wold decompo-

sition, the Lebesgue decomposition, and the Kolmogorov linear prediction theory. We give
only the essential theorems to motivate our use towards the CARD model. The interested

reader may consult [5, 13, 16, 191 foy flrther details.

By the Wold decomposition theorem, any wide-sense z: at ionary random process can be



expressed as,

Xr[ni =i] + w[fnl (I)

where

1. sin] and w[n] are uncorrelated processes

2. s[n] is a singular process in that it can be perfectly predicted by a linear combination

of its past values.

3. w[n] is a regular process (cannot be perfectly predicted by a linear combination of its

past samples) having a moving-average representation

w[n= E b[kju[n - k• (2)
k=O

with E I b[k] 12< oo, and u[n] being a white noise process uncorrelated with s[n].
k=O

By the Lebesgue decomposition theorem, the spectral distribution function (which may
be thought of as the integrated power spectral density) of any wide-sense stationary random

process can be decomposed as

S(f)=Sf) + S 2 () + S 3 (f) , (3)

where Si(f) is an absolutely continuous distribution function, S2(f) is a step function with

steps P. at frequencies fi, and S3 (f) is a singular function. For all practical purposes, the

third component S3(f) can be ignored [13, 16]. By the Wiener-Khintchine theorem, the

autocorrelation function corresponding to S2(f) is

r2 [m] = f 1e2rfm dS2(f)

= _ ie 7rf'' ,

or s2[n] is a sum of sinusoids and is perfectly predictable. Finally, the absolutely continuous

component could represeht either a regular, or singular process, depending on whether (16],
[23, App. 21

Ih S'(f)df > -oo (4)

4



holds or not. respectively. Here f denotes differentiation, so that S-'(f) denotes the PSI)

corresponding to the absolutely continous component in (3). For the most part, the singular

process therein corresponds to perfect prediction based on strictly-infinite past. Examples

of such processes include perfectly band-limited processes. By assuming that the absolutely

continuous component represents a regular process, i.e., (4) is satisfied (which identifies S1(f)

in (3) with w[n] in (1)), we rewrite (1) as

x(n] = _ b(klu[n - k] + Z Aie32w"f* (5)
k=O k= 1

where Ai's are zero mean, complex-valued, random variables uncorrelated with each other

and with the u[n]'s, and £(1 Ai 12) = P_.

The CARD model is finally obtained by noting that, under some conditions, an infinite-

order moving average process is equivalent to an infinite-order autoregressive process. That

this is not true in general is illustrated by [131 the moving average (MA) process

w[n] = u[n] - u[n - 11,

which does not have a autoregressive (AR) representation. The reason stems from the fact

that the MA process has a zero on the unit circle, so that the transfer function

1 1

is not analytic for z > 1. To avoid this problem, we assume that the power spectral density

(PSD) of the MA component in (5) is bounded away from zero, or that P.,(f) > ( > 0 for

all f. Then, (4) is satisfied. This assumption is not overly restrictive in that all physical

processes are subject to observation noise, causing the PSD to be strictly positive. Note

that the general conditions for existence of infinite-order AR representations are extremely

complicated [13].

In summary, we have the following results

Theorem 1 If x[n] is any wide-sense stationary process with PSD P.(f) > c > 0 for all f

so that equation (4) is satisfied, then it can be decomposed as
a

x[n] = w[n] + • Aie• 2 "1'• , (6)

5



where w[n] is an infinite-order A R process given by

w~n] a[kjw~n - kJ + u~nI (7)
k=1

The u[n] process is white noise with variance a2 , and uncorrelated with the Ai 's. The Aj 's are

zero mean, complex-valued, uncorrelated random variables with variances, Q([ Ai 12) = Pj.

As a result of this decomposition, termed the canonical autoregressive decomposition, we

have the PSD
or2  

s

P"f) = I A(e 2 )12 + Ps(f-

where A(el22 f) E • a[kje-j'2 rk and atO] = 1. The word "canonical" stems from the fact
k=O

that such a decomposition can represent the second-order moment properties of any physical

process encountered in practice. Lastly, in most applications, we will assume that the order

of the AR process is finite so that A(e- 2lf) in (8) will be A(eJ2"1 )= 1 + =, a[k],e- 2 ,k.

Hence, the unknown parameters are {p, a[1], a[2], ... , a[p], a.2 S, ,P 1 , f, ... , Pf, fI}.

3 Parameter Estimation

We will now derive an approximate maximum likelihood estimator (MLE) of the CARD

model parameters. It is assumed that the AR process is Gaussian but that the sinusoidal

amplitudes are deterministic. Instead of attempting to estimate the powers Pi in the CARD

model, we modify the problem by assuming that the Ai's are unknown, deterministic con-

stants. The reason for this is that the MLE for the original problem is highly intractable. Fur-

thermore, since only a single realization of the time series is available, it makes no sense to es-

timate the variances P, which are ensemble averages (the MLE will be inconsistent). Finally,

we will also assume that the number of sinusoids (s) and the AR model order (p) are known.

Therefore, the unknown parameters are {a[1], a[2], ... , a[p], a 2, A,, f'1, .I., A,, fo}.

To summarize the estimation problem, we assume the time series model to be

x[n] = s[n] + w~nl (9)

where

s[n] = ZAe' (10)
i6l

6



P

w =n] E a[k] w[n - k] + ~l(1
k=1

Here u[n] is complex, white Gaussian with variance a 2 so that w[nJ, and hence xjn], is com-

plex Gaussian. The unknown parameters are 0 = [AT fT aT 0.2] a where A = [A, A2 ... A,'IT

f = [ff 2... fIT, and a = [a(II[21 ... a .[P] T .

Assuming that a finite-length data record xo = [x[0]x[1]... x[N - 1]] is available, the

approximate (actually conditional) PDF [8, 10] is given by

p(X;6)- 1 1•1 e--- (1

where N' = N - p and a[01 = 1. Maximizing the PDF with respect to c.2 leads to

&22
W7 a[k] (x[n - k]- s[n - k]) (13)

so that to find the MLE of 0' (0 without a2), we must now minimize J(.). Using (10), we

rewrite J as

J ~ N- (O' = , ak n-k- Aej27rfj(n-k) 21a
n-i-p / i=1

()= Za[k}x[n -kI-ZAie ae'_- (14a)
n=p i=1 ) I

= a[k]x[n - k] - a2 a[k]
"=-P k=O i=1 k=O

- a[klx[n -k) -t Ai (1p: rk1re-,721,k' eJ2 rfi 2
n=P k=O i=1 k
N-1 p 2

E E a[klx[n-k] + ieJ 2 ,rfin , (14b)
n=p k= i=1

where p, = - Ai E a[k]e- 2 •#1rk. Clearly J in (14b) is quadratic with respect to the a[kj's
k=O

and tti's. Thus a nonlinear (due to interaction between a[k] and A, in (14a)) least squares

problem is reduced to a linear least squares problem by the nonlinear parameter transfor-

mation,

Pi = -A, ( a[kIe-12rfk (15a)

7



The equivalence of the problems in (1-1a) and (146) via the para.r=eter transformation is

illustrated in Figure 1.

A(z) = 1 ± =- a[k]Z-

x[n] + yn] Minimize over
A()nl1.1 2l A, a\J ""•= tofind INLE

zF1= Aiej 2 rfn

(a) Approximate MLE for Original Parameters

x[n] )+J Y[n] tN-1 112 oMinimize over

zini = = -AiA(ej 2 ,f1 ) e12 if'n

(b) Approximate MLE for Transformed Parameters

Figure 1: Approximate MLE and Sinusoidal Amplitude Transformation

8



Note that -pit can be thought of as the amplitude of the prewhitenened sinusoidal signal,

the prewhitener being implementable if the AR parameters were known. The transformation

from Ai to Pi is one-to-one iff the AR process does not have poles on the unit circle (which

of course it does not), in which case we obtain

A.= -J, ( a[k]ee-j2rIk) (15b)

Now, define

x = [x[p]x[p+1 ... x[N-1]]T

x[p -1] x[p - 21.., X[0]

x[p] x[-P 7 ] -..- xl]H =(N -p) •p

x[N - 2] x[N - 31 ... x[N- I - p] (16)
eJ 2 "fP eJ 2 rf2P . . e32.s

,E0j2 i$f (p+ I) el 27rf2 (p+1) ... e 12 rf.i(p -1)
E =(N-p) x s

e12rfl(N-l) e32 -f2(N-I) ... eJ 2 fo(N- 1 )

so that (14b) becomes

J'(a,pu,f) = Jlx + Ha + EII2  (17)

where u = [JA P2 ... PJ]T, and Ii II denotes the Euclidean norm of a complex vector. It can

be shown that the concatenated matrix [H E] is full rank with probability one if the data

conforms to the assumed model and N > 2p + s, hence a unique minimum exists for J'(.).

Minimizing J' with respect to a and pj leads to (see Appendix A for details)

J"(f) = xH[P. - P•H (HHPkH)- 1 H['Pk]x (18a)

= P E E sE
-xH[P-.- P-LE (EHP)-E) 1 EHP-L4x (18b)

where PR = I - E (EHE)-' EH and PJ- = I - H (HHH)- HH are projection matrices.

All the required inverses will exist since [H E] is full rank with probability one. The corre-

sponding i and is are given by either

•= - (H"P-H)-1 HIP-x (i9a)

= - (EHE)' E (x+IIA) , (19b)

9



or
(= - ( E ) EyE"HPhx (20a)

a = - (H"H)-'H" (x+ En) (20b)

The estimation of the unknown frequencies is accomplished by minimizing J"(.) in (18) and
will in general require iterative, nonlinear optimization techniques. Using these estimated

frequencies in (19) or (20), and (15b), (13), the other parameters can be obtained. Equations

(18) - (20) have some interesting tr--rpretations. The estimate 4 in (19a) can be thought

of as the usual covariance method after subtractinq the signal components (via P') in the

data vector x and the data matrix H. The resulting minimum value for the prediction error

is given in (18a), which must be minimized to obtain the unknown frequencies. Finally, ,

in (19b) is the signal amplitude estimate based on the 'prediction error' x + HM. Similar

interpretations are possible for the other expressions wherein the P' operator is interpreted

as an AR prewhitener, but one that is based on signal + noise.

We now give an example. Assume that we wish to estimate the frequency of a complex

sinusoid in AR noise. Then, using s = I in (18b), we get (since E"PhE is a scalar)

IHPIx(2
J"(f) = xHPtx - eHP-xe

where e = [e32R fej2 flp+l) ... ej2-f(N-1)] T , Ph = I- H (H"H)- 1 HW and x, H are given

in (16). Hence an approximate MLE of the frequency must maximize

He~p•e (21)

This has some interesting interpretations. Let io = Phx = x + HAo, where ho is the usual

least squares estimator (covariance method) of the AR parameters, and ii = x + HA, where

fi is the estimate of the AR parameters given by (20b). Clearly, both are estimates of the

driving noise sequence. As shown in Appendix B, we can rewrite (21) as,

(eHfio) *eHij
(M = e (22)erie

Noting that for low SNR, om -it, so that 60o 6 i, we obtain
I1 I 12

1
N-p

- I Uo (f) 12
lv0



where Uo(f) = e1 fio denotes the Fourier transform of the driving noise sequence estimate.

Neglecting end effects (for A' >> p). we get, U (f) = (•J2 I)'(f). where Ao(J'2rf) =
1 + ?T o[kc-J 2 rfk. and X(f) = TN!=0 x"Jf-l " ':fn denotes the Fourier transform of xfnj.

Hence we obtain.

((f) T .\-X(f)A0 (e 2:'•;) f2,

or equivalently, we may maximize

I X(f) 2 I/N
((f) I/ o (ej 2l) rf2

where 4oa is the MLE of the driving noise variance assuming no signal is present. But,

the numerator is just the periodogram I,(f) and the denominator, the estimated AR PSD

PAR(f). Hence for low SNR, the approximate MLE maximizes

l =( f)

- AR(f)

We may view the procedure as either prewhitening the data followed by peak picking the

periodogram, or normalizing the periodogram by the background noise followed by peak

picking.

4 Extensions to Other Signals

The key to analytical solutions in the previous section was the parameter transformation

(15a) which rendered the problem linear in the new parameters. A careful consideration of

the transformation reveals that this was possible because sinusoids are eigenfunctions of a

linear time-invariant (LTI) FIR filter. If the input to an LTI FIR filter is a causal sinusoidal

sequence, then the output (after disregarding the initial samples) is also sinusoidal, but with

a different amplitude. More generally, if the input sequence belongs to a subspace spanned

by sinusoidal sequences (as in (10),, the output sequence also lies in the same subspace.

This property is an instance of the :o-called subspace invariance of linear transformations

[6, -]. However, subspaces spanned by eigenfunctions are only the most primitive of invariant

subspaces; more generally they involve generalized eigenfunctions and Jordan chains [7].

We now state our results which exuiid the case of sinusoids in AR noise to more general

signals in AR noise. Some of these signals are

11



I. damped and undamped sinusoids: ;[,n = A, r,• 2f, T,

2. polynomials: s[nj = n-' A, n•-

3. polvnomials-times--cxponentials: .i[nj = r,)2f•f, ' , r-)

or their linear combinations.

To do so, we present some definitions followed by our theorems (the proofs of which are

in Appendices C and D). The definitions and theorems are designed to answer the following

question:

For s[n] given by

= Z A[n[]

where si[n] are known and the amplitudes are unknown, we wish to replace the minimization

of N- 2
J(o') = N a[k](x[n - k]- s[n - k])

n=P k0I

N-i p p

E Zta[klx[n -k] - Z:a[k] Aisd~n - k
n=P k=O i=1

by the minimization of

S= iakx[n - k] + is[n2
-lP k=O = I

Hence, we need to have that for all A. a,

P 8 S

E a[k] y A,sfn - kj = - p ,sin] (23)
k=O t=1 i=1

for n = p, p + 1, ... , (N - 1). To be useful, we require the transformation in (23) to

hold for any N and any p for which the maximum likelihood problem is well defined. In

effect, we require that any linear combination of the basis signals {st[hn, s 2[nJ, ... , s,[nj}

when transformed by the linear time-invariant filter .A(z) = 1 + ZP=- alklz-k must produce

rt signal that is again a linear conibination of the basis signals, {Is[n], s 2[n], ... , s,[n]}.

Symbolically, letting L denote the linear filter operation by A(z). we require that

L{ Ais,[nI =T ",,si[n] forp n< N-< . (24)

12



We now find all possible basis signal sets for which (21) holds. Note that it must , old for

all L, or equivalently for all a. The B,'s will of course depend on the values of a anid A.

Definition 1 CN denotes the linear vector space of all length-N sequences. An element in

the space will be denoted by z[O], z[I], ... , z[N - 11.

Definition 2 Let £ denote the set of all p-th order linear transformations on CN. An

element in C, described by the parameters atl], a[21, -.-, a[p], with a[p] # 0, operates on an

element z401, z[t], ... , z[N - 1] in CNv to produce an element y[p], ytp + 1], ... , y[N - 1 in

CN-p according to

p

y[n] = z[n] + Z a[k]z[n- k] ,for p < n < N- 1 (25)
k=1

Definition 3 A p-shift operator P(.) operates on an element z[0], z[1], ... , z[N - 1] in CN

to produce an element zjp], zjp+ 1], ... , z[N - 1] in CN-p. P operates similarly on subspaces

in CN.

Definition 4 A subspace S in CN is said to be invariant with respect to r if L : -S P(S)

for any L E L.

With these definitions, we have our main results. Some related results for p = 1 are

alluded to in [7, p. 200].

Theorem 2 The invariant subspace S of dimension M < N - 2 p + 1 is composed of r

invariant subspaces S1 , S2, ... , S, where S = S1 ED S2 E)... e( S,, and ED denotes the direct

sum of the subspaces. The basis for Si, which is of dimension mi, is

A (n 1  ,.-"" (m,_L ,) A( (26)

for n = 0, 1, ... , (N - 1), and where Ai is any nonzero complex number and E'=, mi = M.

Proof. See Appendix C. <

Note that for the problem of (17) to be well defined, we must have s < N - 2p. This is

more restrictive than Theorem 2 (where M < N - 2p + 1), so that the parameter transfor-

mation itself imposes no new problem constraint.

13



Theorem 3 Let s[n] belong to the inrariant subspace S. From Theorem 2. the signal is of

the form

s[n] B= • 1\( ) - (27)
i=1 3=0

where BV'i are arbitrary constants. Then, for all p-th order AR processes with poles not

located at Al, A2, ... . Ar, we have that, for p < n < NT - 1,

Za[ks[n - k]= - A-' (28)
k=O i=1 j=0

The D(') are found using, Di = TiBi, for i = 1, 2. ... , r, where

Di = [D'o) " ... D(I]T

P

T,= a[k]Jj , (29)
icO

Ai 1 0 ... 0

o0 Aj 1 0
Ji mi x m,

0 0 0 ... Ai

B, = [B'o) B(') ... B'" T

Proof: See Appendix D. 0

Note that the transformation from Bi to Di is invertible since T, is nonsingular. This is

because j7k is upper-triangular with A7 k along the main diagonal, so that Tj is also upper-

triangular with E'oa[k]A7k along its main diagonal. Since the AR process does not have

poles at the Ai's, T, will be nonsingular. This means that the least squares minimization

can be done with respect to Di's.

We now present some examples and then discuss the restrictions on the modes, Ah's.

Examples:

1. Sinusoids and damped sinusoids:

Let mi = 1 and Ai = rieJ2wfi in (27). Then, we get

s[n] = B'"r

14



2. Polynomials:

Let r = 1, m, = M, and A, = 1 in (27). Then, we get

M- I (n)s[n] == E B,
j=O J

But, (n) = n!/j!(n -j) =n(n - 1)" (n-j + 1)/j!, so that (n) is seen to be a

polynomial of degree j. It can be shown that

M-1
s[n] = E B-j.

j=O

This case was originally discovered by Djuric [4].

3. Polynomials-times-Exponentials:

Let r = 1, m1 = M and A1 = re-"'f in (27). Then, we get

s[n] = 2B (fn)(re •27rf)

or
M-l

s[n] =re'" r B'n.
j=O

Also, any linear combination of these signals is possible.

Once the signals have been chosen, the general form of the output signal is known except

for the amplitudes, which are to be estimated. To recover the input signal amplitudes, we

use from Theorem 3,
Bi = T'IDi•

Since Ti is upper-triangular with E"=0 a[k] -k along the diagonal, T, will be non-singular

iff

A(A,) = 1 + 1 a[k]A.7k # 0, (30)
1C=1

Therefore, for the transformation in (29) to be invertible, the zeros of the filter A(z), i.e.,

the poles of the AR process, should not lie at the signal modes. Otherwise, A(z) annihilates

the corresponding signal mode and the original amplitude is not recoverable. In section 3,

we had s[n] = E%, AjeJ 2#Jmn, so that (30) meant that A(e"2 "f') # 0, or the poles of the

noise process should not coincide with the sinusoidal frequency locations.
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5 Some Applications

The CARD model is useful in that it reduces a nonlinear minimization problem involving the

AR parameters, signal amplitudes, and signal modes, to one involving only the signal modes.

Additionally, because of its form, the signal and noise are independently parameterized. the

Fisher information matrix is block diagonal [24]. This has important implications because it

says that the Cramer-Rao (CR) bound for the signal parameters is the same for the cases of

known AR parameters and unknown AR parameters. For instance, in the spectral analysis

problem of section 3, the CR bound for the sinusoidal parameters can be found in [18),

although it was not as thoroughly investigated as the white noise case. When the CR bound

is attained, the estimation performance is as good as if the AR parameters are known. In

detection applications, this translates into optimal detection in unknown AR noise [11].

Although the number of applications of the CARD model and its extensions is quite

large, we now briefly describe some of current interest to the signal processing community.

They are

1. spectral analysis

2. broadband / transient detection

3. fundamental frequency estimation

A. Spectral Analysis: Spectral analysis of time series using the CARD model can be imple-

mented if the number of sinusoids and the order of the AR process are known. Otherwise,

some means of model order selection must be employed. We are currently investigating

this problem. Assuming known model orders, the sinusoidal frequencies can be estimated

by minimizing J"(.) in (18). Then the AR parameter and sinusoidal frequency estimates

are found from (19) or (20). The minimization of J" will be difficult for more than a few

sinusoids, so that we are currently investigating various approaches.

We now present some numerical examples using N = 25 data samples consisting of two

sinusoids in colored 2 "d order AR process. Three generic spectral estimators are considered,

one is a purely continuous PSD estimator, the second a purely discrete (line) spectral esti-

mator, and the third is a mixed spectral estimator given by the CARD model. The purpose
is to provide some brief numerical comparisons on how the CARD model estimates compare

with usual methods when (i) an estimate of the entire spectrum is of interest, and (ii) only

16



the frequency estimates are of interest. The purely continuous PSD estimator chosen here

is a 12th order AR spectral estimate computed using the modified covariance method [101.
This is a common choice in such mixed-spectrum problems. The line spectral estimator was

obtained by minimizing (18b) with p = 0 and s = 2, and is a implementation of the NILE
for the sinusoids in white noise problem [10]. Strictly speaking, as an estimate of the overall

spectrum, this (in itself) will provide a very poor estimate, and higher orders (i.e., s > 2)
will be needed for this purpose. In applications wherein only the frequencies are of interest,

this (along with AR spectral analysis) is the most common implementation. Finally, the

CARD estimate is obtained by minimizing (18b) with p = 2 and s = 2. The AR param-
eter estimates in CARD are then computed using the estimated frequencies in (19a). The

minimization of (18b), in both estimators, was carried out by implementing a 500 x 500 grid

search for the unknown frequencies. The sinusoidal components are indicated by a single

line of height A•/o 2 (the true values of Ai, a2 are used, not their estimates) located at

the estimated frequency. The display is therefore indicative of the sinusoidal power relative

to the noise PSD. Typically, several realizations of these estimators will be plotted so that

small variations in the frequency estimates cause the resulting lines to appear adjacent to

each other and thereby forming a narrow band.

As the first example, a narrowband AR(2) process with poles at 0.95 e 2"'0 1 and

0.95 e 2 ,•°' 2 and a driving noise variance of 0,2 = 1.0 is considered. The sinusoidal fre-

quencies were f, = 0.60 and f2 = 0.62, and the amplitudes were A, = A2 = 1.0. The local

signal to noise ratio (SNR), given by NA/P,,,(fi), and broadband SNR, given by A?/r,,,[0,

are about 25 dB and -17.5 dB, respectively. Figure (2 a) shows the CARD spectral estimate

for 10 independent realizations of the data set. The line spectrum for the same data set is

given in Figure (2b). The frequency estimates are highly biased (as expected, the model is

incorrect) and are very close to the peaks in the noise spectrum. This is attributed to the

extremely low sinusoidal power. The AR spectral estimate, shown in Figure (2c), exhibits

a number of false peaks (as expected, see [10]), and sinusoidal resolution is poor. Finally,

the average CARD spectrum (computed using 50 trials) is shown in Figure (2d) and is very

close to the true PSD.

To illustrate the effect of sinusoidal frequency location relative to the noise peaks, we

change the sinusoidal frequencies to f' = 0.30 and f2 = 0.32. The local SNR reduces to
about 11.5 dB, which is too low for all three algorithms. The local SNR can also be thought
of as N I p, 12 /a 2, where pi is the "prewhitened" signal amplitude (see (15a)). Hence by
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changing the frequencies we are effectively reducing the SNR that dictates performance of

the CARD model. The amplitudes were increased to A, = A 2 = 10, for which the local SNR

was about 31.5 dB and the broadband SNR was about 2.5 dB. Figures (3a) - (3c) show the

three spectral estimators for 10 independent realizations. Since the frequency estimates in

Figure (3b) are a little unclear, Figures (3d) and (3e) show the frequency estimates using

CARD and line spectral estimators for 50 independent realizations. The bias in the line

spectral estimate for Ji is towards the noise spectral peaks, while that for f2 is towards 0.31.

No such systematic bias is noticable in the CARD estimates. The average CARD spectrum

(computed using 50 trials) is shown in Figure (3f) and is quite close to the true PSD.

It is clear that the improvement (vis a vis estimator bias) in the CARD frequency estimate

over the usual frequency estimate (i.e., minimizing (18b) with s = 2 and p = 0) is not as

drastic as in the previous example. Loosely speaking, the latter estimator searches for total

spectral power in narrow bands (sinusoidal power, noise peak power, etc.) Hence, it will

yield reasonable (low bias) frequency estimates when the sinusoidal power is much larger

or comparable to the noise peaks (as in Example 2), and will yield poor (highly biased)

frequency estimates when the noise peaks are much larger than the sinusoidal powers (as in

Example 1). An analysis of the CR bound brings out the dependence of the CARD estimator

performance (via variance) on the local SNR as well as Al/P,"'(f), where I denotes derivative

with respect to f, and is currently in progress.

A third example using broadband AR noise is now considered. It illustrates the effec-

tiveness of the CARD model for narrowband + broadband spectra, which is difficult to

implement using other modern spectral analysis methods [101. The AR(2) poles are located

at 0.70 e•2 °O. and 0.70 e, 2 w' 2 , and the driving noise variance was a2 = 0.5. The two sinu-

soidal frequencies were f, = 0.60 and f2 = 0.62, and the amplitudes were A 1 = A2 = 1.0.

The local and broadband SNRs are about 25 dB and 5 dB, respectively. Figure (4a) shows

the CARD spectral estimate for 10 independent realizations of the data. The line spectral

estimate is given in Figure (4b) and shows one sinusoid near 0.61 and the other sinusoid in

the general vicinity of the noise power concentration (about 0.05 to 0.25). The AR spectral

estimates in Figure (4c) still show a large number of false peaks, but the sinusoidal resolution

is a little better (as compared to Example 1) probably because the broadband SNR is a little

higher. Finally, the averaged CARD estimate (computed using 50 trials) is shown in Figure

(4d) and is quite close to the true PSD.

B. Broadband Signal Detection: The difficulty of optimization with respect to the unknown
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frequencies can be substantially reduced if the frequencies are known to be related to each

other. One case is broadband detection for linear arrays in which a broadband signal can

be modeled as a sum of 2-D sinusoids. Since the signal is known to arrive from a certain

direction, we know that the frequencies lie along a "bearing line." All that is unknown is

the bearing. This results in a relatively simple 1-D optimization over the possible bearings.

The interested reader must consult [12] for further details.

C. Fundamental Frequency Estimation: Another related application area is fundamental

frequency estimation for a periodic signal in colored noise. This problem arises in speech

processing as pitch estimation in colored noise, the co-channel problem (for sum of voiced plus

unvoiced speech segments) [17], in biomedical applications as electro-cardiogram monitoring

in colored noise, etc. We develop the estimation procedure in some detail.

Assume that we observe a periodic signal in Gaussian AR noise, or

S

x[n] ZAcj1 2 "1f" + w[n] , (31)

for n = 0, 1, ... , (N - 1). The fundamental frequency fo is to be estimated along with the

Fourier series coefficients Ai and the AR parameters, af1], a[21, ... , afp], o2. The number

of harmonics s is given by [0.5/f0j, where LxJ denotes the largest integer less than or equal

to x. The fact that the number of nuisance parameters s + p + 1 to be estimated increases

with decreasing fo, can sometimes cause problems with the ML approach. In a sense, the

model order changes with a parameter (fo). A general approach to the problem involves

model order selection [4]. In any event, the MLE of the parameters is an integral part of

that approach. We now discuss the MLE, further details are available in [4].

The approximate MLE of the fundamental frequency is found by minimizing (18b), i.e.

minimizing
J"(f) = xH [P) - P),E (EHPIE)-' EHPt] x, (32)

where f = [fo 2 fo ... Sfo]T, or by maximizing
W(fo) = x HPiE (EHP)-E)-' E"P-tx (33)

At low SNR, an interpretation of (33) is to whiten the data (via P') followed by summing

the energies at the harmonics. This is a prewhitener / comb filter / energy detector. The

argument is simiiar to that in [12, section 3].
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In the case of a periodic signal in white noise, we would have to maximize

C'(fO) = xo'E (EHE)- 1 E"xo, (34)

where E = [e, e2 ... es], and e, = [i ej 2 io )j21!
102 ... ej20ifo(N-1)]T. If the data record is

large enough so that the harmonic components are orthogonal, this becomes

C'(fO) x'HE (NI)-' EHx0 , (35)

so that

( WOX(ifo) 12 , (36)

which is recognized as a comb filter / energy detector. For the colored noise case, however,

we must maximize (33) over fo, a simple one dimensional search.

We now illustrate the procedure with a simple numerical example using N = 100 data

samples. A periodic signal with fundamental fo = 0.09 and amplitudes A1 = 0.5, A2 =

1.0, A3 = 0.5, A4 = 0.5 (with s = 4) is considered. Colored AR(1) noise with a pole at

0.95 e12 r•"°' and a.2 = 1.0 was added to the signal to generate the observed data. The

fundamental frequency was estimated by minimizing the function given in (33) (the pro-

posed method) and (36) (the usual comb filter + energy detector) using a line search over

[-0.125, 0.125). Note that we must have -0.5 < sfo < 0.5. The signal amplitudes are

then computed using (20a) and the estimated fundamental frequencies to reconstruct the

orignal signal. The real part of the original signal and the reconstructed versions are shown

in Figure 5. The marked improvement of the proposed method over the comb filter + energy

detector is mainly due to accurate estimation of the fundamental frequency. This happens

because a simple comb filter + energy detector picks up the noise power and estimates the

fundamental to be near the noise peak (or its subharmonic), unlike the proposed method

which accounts for the noise coloration by appropriate prewhitening.

6 Conclusions

Many important problems in statistical signal processing involve separating an observed time

series into a deterministic (signal) component and a random (noise) component. By mod-

eling the noise as an autoregressive process, and the signal as either complex cxponentia,-s,

polynomials. or polynomials-times-exponentials, a large ciass of problems can be addressed.
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The main utility is due to the enormous reduction in estimator complexity, so that practical

solutions to a large class of problems is now possible. Some of these problems are discussed
in this paper. However, many questions such as estimation of signal modes, model order

selection, etc. are yet to be investigated.
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Appendix A

Equivalent Forms for Minimum Least Squares Error

We consider the generic least squares (LS) problem of minimizing

J(01,02) = (x - HeO - H202)H(x - Hie 1 - H 20 2 ) (A- 1)

The solution is easily obtained by letting 0 = [1T 0] T and H = 2H 1 H2] so that

0 = (H 1 1H)- 1 H x, (A-2)

and the minimum least squares error is

f(01,,02) = Xg x H (A - 3)

where P- = I - H (HHH)- 1 H" is the orthogonal complement projection operator.

This may also be obtained by first projecting x onto the subspace spanned by the columns

of HI, and then projecting the residual onto the subspace spanned by the residual columns

of H 2.

In other words, minimizing J in (A-i) first with respect to O9 we get

0 (02) = (HIHH) -'HH (x - H20 2 ) , (A -4)

and substituting into (A-i) produces

(81(02),02) = (Ptx - P•-H20 2 ) (Ptx - PtH 202 ) , (A -5)

where P = I - H, (HHH,)- 1 H . Next minimizing J in (A-5) with respect to 02 we get
02 = (HHPtH2 )-fH Ptx, (A -6)

and

=- xH [pb - PtH2 (H -PLH2) H (A - 7)

where the fact that P-L is idempotent, i.e. p±H - = P-LP was used. The overall

projection operator is P' = P' - PtH 2 (H'PtH2) 1 H'Pit which projects a vector onto

the orthogonal complement of the subspace spanned by the columns of [H1 H 21. Finally,

using (A-6) in (A-4), we get the overall solution for 0 as

i1 = (HHH,)-yHH (x - H 20 2) (A - 8)

These expressions. (A-7) and (A-6), (A-8), were used to minimize (17) in section 3 to

obtain expressions (18) and (19), (20).
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Appendix B

Alternative Form for MLE of Single Frequency

Let 6i = x + Hfi, denote the estimated driving noise sequence, where A is the estimate

of the AR parameters which accounts for the presence of the signal. Also let 6i0 = PHx,

denote another estimate of the driving noise wherein the AR parameters are estimated

without accounting for the presence of the signal (i.e., using usual covariance method of AR

parameter estimation). Hence, using (20a) in (20b), we obtain

ul= x+H&i

=i x + H ii,- H(H"H)HH [X - e (eHPLe)- H

XPHe eH If
eHPjLe

P~eeHH

CIO0 + e~Pke eH

and thus

e eHfio + eHp eHfio
eHP-Le

erie eeH f 0o

-- e"Phe

Using this ;n (21), we have

I er[PLx 12

eHCo 12
= eHp-Le

eH•.Y1 eHPL
Ii. -H

eHfif~e
e _1,

e2e
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Appendix C

Invariance Proof

Let sifnJ, s2 fnj, .... sM[n] he a basis for S, a stibspace in C.. Then by definition of the

invariant subspace if x[n] given by

M

x[n] = Zaisif[r] =a Ts[nI, for ,, =o . 1 .. (N - 1.)
a=1

c S, then y[n] = x[n] + 2-=,- a[klx[n - k] E P(S) if there exist 31t 32, .... 3. such that

yfn-3 isidn]= r3T s[nI, for n=p,p+l,..(N- 1).

Thus by definition, for any L E C and r[n] - a Ts[n] E S, so that

y!n) = a 's~n) + 1: afkja 'sfn - k)
k=1I

we must have that y[n] E P'(S). If we choose an L E C such that a[1] = a[2] = 1

a[p - 1] = 0, then

y[n] =T sfn] + afplct TS[n - p]

and y[n] E P(S) iff

sfn - p] = Aps[n] (C - 1)

for some M x M matrix Ap. Hence, we get

p-I

y[n] = aT(I + aLp]Ap)s[n] + Z a[kja Ts[n - k]
k=1

Now choosing each of the remaining a[iJ's to be zero except allj, with I < < < (p - 1) (and

a[p] 6 0 and s[n - p] satisfying (C-1)), leads to

stn-j] = Ajs[n] for I <j _<•(p- 1) . (C-2)

Combining (C-i) and (C-2), we have

sin-j]=.Ajs[nl for l_<j <p, (C-3)
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and forn=p,p+l ... , (N- 1).
But these conditions are all satisfied if and only if

s[n-1]=Ais[n] for 1 <n <(N-1) , (C-4)

with A, being nonsingular, as we now prove. 0

Note that (C-3) and (C-4) are trivially equivalent for p = I so that only p > 2 are of further

interest. Also only the p = 1 case is considered in [7, p. 200].

First, we assume (C-4) is true (if part). Hence condition (C-3) for j = 1 is trivially true.

Rewriting (C-4) using m = n + 1, we get

s[m-21 = Als[m-1] for2<m<N

= A~s[m] for 2 < m < (N - 1) (C-5)

Hence condition (C-3) is true forj = 2. Similarly, we get

s[n-j] = Ajs[n] for p _< n < (N- 1) , (C-6)

for j = 3, 4, ... , p, i.e., condition (C-3) is true, with Aj = A*.

Next, we assume (C-3) is true (only if part). Then rewriting (C-3) for j = 1, we have

s[n- 11 = Als[n] for p:5 n < (N- 1) , (C - 7)

so that one needs to only prove that (C-4) holds for I < n < (p - 1). Considering (C-3) for

j = 2 and n = p, we have

s[p- 2] = A 2s[p]

But A 2 = A2, as we will prove henceforth, so that

s[p- 2] = A s[p] = A, (Als[p])

and using (C-3) for j = 1 and n = p, i.e., s[p - 1] = Als[p], we get

s[p - 2] = Alstp - 1]

Combining the above result with (C-7), we get

s[n - 1] = Al,[n] for (p- 1) < n2< (N - 1) 7(C -8)
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Continuing in the same vein using A. = A', we obtain (C--4) for 1 < n < (N - 1).
We now prove that (C-3) also means A, = A', as used above. We consider the proof for

A 2  Al, the other cases are similar. Rewriting (C-3) for j = 1, 2, we have

s(n- 1] = Als[fn for p: _n < (N - 1) (C-9)

stn- 21 = A 2s[n] forp n•<(N< -l) (C-10)

and letting m n + 1 in (C-9) we have

s[m-21 = Als[m-l] for (p + l) _< m < (N -1)

= A2s[m] for (p+ 1) _ m <_ (N- 1) (C-11)

after using (C-9) again. Combining (C-10) and (C-11), we get

(A 2 - A2) s[n] = for(p+l)<5n<(N-l). (C - 12)

This condition is satisfied in general when a vector s[n] lies in the null space of the M x M

matrix A2 - A2. We however have M linearly independent vectors amongst sip], s[p +
1) ... , siN - 1] since the columns of the matrix

sT[p] SI[p] S2[p] "'" sM[pI

sT[NI- 11 si[N-1] s 2[N-1] ... sM[N- I]

form a basis for P(S) (and are therefore linearly independent). In particular, we prove (by

contradiction) that the last M vectors must be linearly independent, or that the vectors in
Q = {s[N - M], s[N - M + 1], .. , s[N - 1]} must be linearly independent. From (C-3),

s[n-1]=Ais[n] for p5n<(N-1)

and using a backward recursion, we obtain

siN-21 = Ais[N-1]

s[N-3] = A~s[N-11

s[N - M] = At-'s[N -- 1]

28



Hence the set of vectors become C = {Ai'-s[N - 1]. A-'s[,V - 1].... AIs[N - 1]. s[.V -

1]}. But, by the Cayley-Hamilton theorem, any matrix satisfies its own characteristic equa-
tion or AA"

j=1i=I

so that the vectors s[N- M- 1], s[N- M- 2], s[p], must all be linear combinations of the
vectors in Q. Therefore, if the vectors in Q are not linearly independent, then there does not
exist M linearly independent vectors amongst sip], sip+ 1], ... , s[N - 11. This contradicts

the basic assumption that the sequences si[n], s2[n], ... , sM[n] form a basis for P(S). Hence
the vectors in Q must be linearly independent. Finally, as long as M < N -p- 1, for (C-12)

to be satisfied with M linearly independent vectors s[n], the only possibility is for the Ml x× M

matrix A2 - A 2 to be the all-zero matrix, i.e., A2 = A2. The proof for Aj = AI is along
the same lines except that there are N - p - j + I vectors satisfying

(AN - A.) s[nl = 0 for (p+j -1) < n < (N-1).

so that we need M < N - p - j + 1 for all 1 <j < p, or that M < N - 2 p + 1.
We finally show that the matrix A, must be nonsingular. Recall that s[n] is a basis for

P(S), i.e.,
a Tsfn]=0 forp<n<(N-1) 0

aTs[n--1]=0 forp+1<n<N +1< a =0

and using (C-4) we have,

aTAis[n]=0 forp-t-1 <n<(N-1) a =0

( ) s[n-=0 forp+1 (N-1) =. a=0

Since there are M linearly independent vectors amongst s[p + 1], s[p + 21, ... , s[N - 11, we

have
Ara=0 =* a= 0

i.e., A, is nonsingular. 0

We now denote D = A"1 so that (C-4) can be written as

s[n] = A's~n -11]=Ds[n- 11 for 1 < n< (N -1) (C -- 13)

where D is nonsingular. Solving the above recursion, we get

sfn] = D's[O] , (C- 14)
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for n = 0, 1 ..... (N - 1). We now proceed to find all basis signals s,[n] (that comprise s[nj)
which satisfv (C-14).

Since D is arbitrary (only nonsingular), we consider its Jordan canonical form. i.e.,

D = QJQ-'

where
J, 0

J2

0

and Q is a M x M modal matrix. The Ji's are mi x mi matrices, called the Jordan blocks,

which are of the form
Ai 1 0 .. 0

i j 0 A i 1 . - 0

0 0 0 ... Ai
and Ai is a non-zero (because D is nonsingular) complex number, and M = = mi. It is

easily seen that D' = QJ,,Q-. so that (C-14) becomes

s[n] = QJ'Q-ls[0]

Using s'[n] = Q-1s[nj as an alternate basis for CN, we can rewrite the above equation as

S'[n]-=Js'0

and dropping the primes, we have

jn 0

s[n] = 2 [0,

0 •

30



and since P is block diagonal, it is enough to consider the form of J'. Denoting V, to be a

mi x mi matrix with ones along the tipper second diagonal and zero, elsewhere, I e..

0 1 0 ... 0

0 0 1 ... 0

Vi

0 0 0 -... 1

0 0 0 ... 0

so that

Ji = AMI + Vi

where I denotes the m, x mi identity matrix, and using the binomial expansion for J' we

obtain,

J• n (A 1I+Vi)"

1=0I

where V? = I. The matrix V1 has ones along its I + 1 upper diagonal and zeros elsewhere

and V, = 0 for I > mi, as can be easily verified. Hence,

1= E

which may be explicitly written as

o' n)A (n)~- (min)hm

=0 ( nm2_) _(C -15)

0 0 0 .
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Partitioning s[n] as s [] sTn... sT[,ij]T, where sjn] is m, x 1. the soliutaion LcoMres

s,[,,] = Ja sfo .

Examining the form of J' more closely, and denoting s,[O] = [CO C _I] Tc,u_]r we rewrite

the above equation as

sn] = Jas,[O0

-(n ) A, i
0 o) ... ( n ,,-(,,,-2)

C-0

o o(mn 3 )A (ms-3)
rn- C-,33) CM, - I

o 0 0 An.L0 X?

CO C1  C2  Cm,.. 1•A

C1  C2  C3 ... 0
C2  C3  C4 ... 0 (C16)

Cm..2Cm,- l0 0 (flA 0 .. (m.-0)

c ,, _. 0 0 - 0 ni - 1 A

Finally, the signals {A,', ( )Aý-1, (n)A! *"' (min. )A n(M-1 can be easily shown

to be linearly independent. Since we can assume without loss of generality that cm,-1 # 0

(it only decides the dimensionality of the subspace) and hence the matrix is nonsingular,
the elements of si[n] will also be linearly independent and will span the same subspace as

the signals {JA, ( A•n-1, ( . 2 .. ' mil-. 1 A }, which is a mi dimensional

subspace Si. The number of these subspaces is arbitrary as long as F_'= mi = M. The

entire subspace spanned by these signals (with different A,), i.e., S, is the direct sum of the
iubspaces, Si, or S =SI () S2 (D ( S.-. 0
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Appendix D

General Parameter Transformation

To determine the general parameter transformation, consider the signal

r m,-I (n,s[n] = E 1 _ B(.) A`•- (D - 1)

i=1 jzO

Since each subspace Si is invariant, we need to consider only

si[n] = (n ) '-j (D - 2)j=0 J

Let B" B B(1) , and since the first row of JP contains the basis signals, we
obtain

,[n]= BTsi[n]
A n

n A!':
I

= [BO') B(')... B"• 2 -

= BTjnTe,

where el =[100 .. O] T. But,

yi[n] = Z atkl•s[n- k]
k=O

= E a[k]BTJI-"rTel
k=O

= Bi (1 a[kJ] T J el

-TS,3[n]
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where
Di-E a[k',J, -k )Bi

fori= 1,2,.... r.
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Figure 2a: CARD Spectral Estimate
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Figure 2b: Line Spectral Estimate
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Figure 2c: AR Spectral Estimate (modified covariance method)
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Figure 3a: CARD Spectral Estimate
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Figure 3b: Line Spectral Estimate
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Figure 3c: AR Spectral Estimate (modified covariance method)
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Figure 3d: Frequency Estimates using CARD (solid) and line spectra (dashed)
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Figure 3e: Frequency Estimates using CARD (solid) and line spectra (dashed)
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Figure 3f: Average Spectral Estimates using 50 realizations
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Figure 4a: CARD Spectral Estimate
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Figure 4b: Line Spectral Estimate
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Figure 4c: AR Spectral Estimate (modified covariance method)
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Figure 4d1: Average Spectral Estimates using 50 realizations
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